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Various methods of unl!imited cumulation (UC) of an ideal (inviscid and non-heat-conducting) gas subject to one-dimensional 
unsteady compression 1~ a plane, cylindrical, or spherical piston are considered. The most perfect method, namely, UC with 
isentropie compression from rest to rest, which is referred to as "ideal" (IUC), is compared with three other methods of UC, 
which correspond to well-known self-similar solutions of one-dimensional gas compression. The most effective of these is UC 
with a reflected shock wave, behind which the compressed gas is homogeneous and at rest, as in IUC. The efficiency of various 
methods of UC is estimated by the ratio of the work done during compression to the work in the case of IUC, the ratio of the 
internal energy to the total energy of the compressed gas, and the degree of gas homogeneity with respect to the Lagrangian 
variable. Computations of these characteristics are carried out for a perfect gas with various adiabatic exponents. © 1997 Elsevier 
Science Ltd. All rights zeserved. 

Interest in the problem of UC with one-dimensional compression has been stimulated by numerous 
applications, indud.ing controlled inertial thermonuclear fusion projects [1--4]. It is understood th~it only 
finite compression is realistic. Nevertheless, UC provides a fairly complete picture of compression to 
volumes that are small compared with the initial one, but non-zero. In a theoretical analysis it is natural 
to consider self-sim~ilar solutions. In the plane case one of these [5], consisting of a centred compression 
wave, yields in the limit an infinitely compressed gas with uniform distribution of the parameters with 
respect to the Lagrangian coordinate and with a small ratio of the internal energy to the total energy. 
Despite the fact that self-similar analogues of this solution for a cylindrical and a spherical piston have 
similar properties, :it is to them that the main attention has been devoted [2--4, 6-8]. In the phase plane 
the integral curve describing this type of UC is a separatrix terminating at a saddle singular point. 

The above solution and the corresponding UC, that is, UC1 do not exhaust all possible methods of 
UC that can be des~:ribed by self-similar solutions. Two other self-similar solutions (more precisely, two 
other integral curves) provide homogeneous states of an infinitely compressed gas: one (UC2) with 
infinite speed directed towards the origin, that is, the volume centre, and the other one (UC3) with the 
gas remaining at rest behind the shock wave reflected at the centre. All these methods of unlimited 
compression, including IUC, involve the same finite compression time, equal to the time needed by a 
plane, cylindrical, of spherical sound wave to travel through the tmcompressed gas. They also involve 
infinite work done lay the piston. However, the work done in compressing the gas up to the same finite 
volume is different for the different ways of compression. The limits of the work ratios corresponding 
to UC are also different. As has already been mentioned, the most perfect method in unlimited 
compression is pro, hded by IUC. We denote byA0 the work done by the piston during IUC and byA~ 
the work done by the piston under UCN with n = N = 1, 2, 3. The ratios A~/Ao are found below for 
plane, cylindrical and spherical pistons compressing a perfect gas with various adiabatic exponents T, 
and it is shown thatA1/Ao > A2/Ao > A3[Ao. > 1. 

1. Let t be the time and letx be the Cartesian, cylindrical or spherical coordinate, namely, the distance 
to the "centre of compression", i.e. a plane, axis, or centre of symmetry of the volume containing some 
homogeneous gas initially at rest (in the plane casex = 0 either in the plane of symmetry or at the fixed 
wall). The piston begins to move from x = xi at time t = t i. Here and below, unless otherwise stated, 
subscripts are assigned to parameters at the corresponding points. In symmetric compression the x- 
component u ~< 0 is the only non-zero component of the gas velocity. The 'null' subscript will be assigned 
to the initial parameters of the gas, the initial coordinate xi of the piston will be taken as the length 
scale, and xi/ao, the time it takes for a plane, cylindrical, or spherical sound wave to travel across the 

tPrikl. Mat. Mekh. Vol. 60, No. 6, pp. 1000-1007, 1996. 

979 



980 A. N. Kraiko 

j't (a) ¢ (b) t; (~) 

I 

Fig. 1. 

uncompressed gas will be taken as the time scale (a is the velocity of sound). The initial time t will be 
chosen in such a way that, as shown in Fig. 1, xi = 1, ti = -1 in the xt plane at the initial point i of the 
trajectory of the piston with the scaling adopted above. Thus, the origin x = t = 0 corresponds to the 
time of arrival on the t axis of a sound wave (C--characteristic) starting from the initial point of the 
trajectory of the piston. In the solutions considered below the gas is at rest under the "initial" C-- 
characteristic: x = -a0, t = - t  the gas is at rest while its parameters are constant and equal to their initial 
values (in the equation for the C--characteristic a0 disappears by the choice of the length and time scales). 

Ideal UC can be obtained by taking the limit asxf--> 0 of the solution [9] presented in Fig. l(a), where 
i f  is the trajectory of the piston, io is the initial C--characteristic, and off'  is a packet of compression 
waves from the C+-characteristics. Its rectilinear closing characteristic J*f is the lower bound of the 
domain of homogeneous compressed gas with u = 0. The possibility of isentropic compression of finite 
duration from rest to rest follows practically at once from the invariance of the equations of one- 
dimensional unsteady gas dynamics with respect to the choice of the starting time t and by altering the 
signs of t and u simultaneously. As a result, the problem of compression from rest to rest can be obtained 
from the problem of gas expansion from rest to rest (Fig. lb) and its solution can be reduced to 
computing the rarefaction wave packetff 'o and to determining the trajectory of the profilefi from the 
Goursat problem with data on the closing C--characteristicfo of this packet and on the rectilinear C +- 
characteristic oi. The  gas parameters are constant on oi and u = O. 

We will denote by p, e, h and s the density and the specific internal energy, enthalpy, and entropy of 
the gas. Since in the case of Fig. l(a) the parameters of the compressed stationary gas are homogeneous, 
the following formulae for the workA done by the piston and the densitypf can be obtained from the 
laws of conservation of energy and mass, using the fact that the compression process is isentropic 

A = e f _  l_e . f (p / ,p0 , s0 )_ l ,  Pf=PoX~V (1.1) 
Meo eo 

Here M is the mass of compressed gas and v = 1, 2, 3 for a plane, cylindrical and spherical piston, 
respectively. For a perfect gas, by (1.1) we have 

e*f = ef / e 0 = (pf / p0) v-L = x~ 0-v) (1.2) 

The limit a~ xf--} 0 in ( 1.1 ) and (1.2) yields infinitely increasingA and Pt, which correspond to UC. The parameters 
of the gas subject to unlimited compression other than u --- 0 and the velocity of the piston also increase to the 
right off.  As has already been observed, according to [10, 11], tf tends to zero simultaneously and the total 
compression time approaches one. For IUC and other forms of UC studied below, the unlimited increase in the 
work done by the piston is a consequence of a non-integrable singularity of the pressurep as a function ofx asx 
---} xf = 0. Because of it, an infinitesimal (in the increment of x) section of the final trajectory makes an unlimited 
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contribution to A. The same singularities of trajectories corresponding to different methods of UC are the main 
reason of their different effectiveness as measured by the aforementioned criteria. For any xf > 0, preserving 
uniformly compressed gas at rest for t > t I requires the piston to,stop abruptly, that is a physically unreal situation. 
However, as the piston continues its motion, the attained state is preserved everywhere under the trajectory of 
the shock wave, which travels from the point f towards the t axis in this case. This is important in applications, 
where xf is always non-zero. 

Restricting ourselves in what follows to a perfect gas with constant heat capacity, by [12] we can 
represent the flow parameters as follows when considering self-similar solutions 

x a 2 ( t / 2  
u = -  U(x), = et(x), p = 9oR(X) 

t 
(1.3) "'fx/2 _ a 0 t  t 

P = P 0  P(x),  R, x - m = - -  
k t }  y x x 

where U, ot and R ~tre functions to be determined and z is the self-similarity variable. By (1.3), for such 
self-similar solutions all parameters are constant along the rays x = t/x = const emerging from the origin. 
Diagrams for two ttows of  this type are shown in Fig. l(c) and (d). The first one corresponds to UC1, 
and the other  one to bounded compression from rest to rest with the shock wave of, which leaves the 
gas moving towards the "centre".  In the region behind the shock wave (xf < x ~< **) 

U - 0 ,  R - R I + ,  a = a i + ( x / x l )  2 

Here  and henceforth the subscripts f -  and f +  are assigned to the parameters before and after the shock 
wave. In both case,'; the gas is stationary also under the initial C--characteristic io, where --** ~ x ~< -1, 
U = 0, R - 1 and o~ -- x. The last equality is the result of choosing the velocity of sound in the 
uncompressed gas as the scale of u and a, which is consistent with the length and time scales introduced 
earlier. On io 

x = - l ,  U = 0 ,  cx=l,  R = l ,  P = l / y  (1.4) 

Compression is isentropic in the case of Fig. l (c)  for all x and in the case of Fig. l (d)  for x < xf. Th in ,  
for such x 

,0 
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Fig. 2. 
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( ot ,~l/(~,-n) 
R = t-~- J (1.5) 

Taking (1.5) into account, the construction of self-similar solutions of the type under consideration 
can be reduced to the integration of the two equations 

d U  _ U[vot  - (U  - 1) 2 ] d...~x = x [ a  - (U  - 1)21 (1.6) 

dot 2ot[ot - (U - I)(U - 1 + n U ) ] '  dot 2ot[ot - (U - 1)(U - 1 + nU)]  

n = ( v  - 1 ) ( T -  1 ) / 2  

with initial conditions (1.4). These equations are the same, apart from the notation, as those in [12]. 
The above equalities describing a gas at rest naturally satisfy these equations. 

The first equation in (1.6), which does not contain x, has three singular points, which are important 
in what follows: the node U = 0, a = 1, which by (1.4) corresponds to the initial C-characteristic io,  

the node U = a = 0, and the saddle 

U = 2 a = V(T  - 1)2 (1.7) 
2 + v ( T - 1 ) '  [ 2 + v ( T - 1 ) ]  2 

One of the separatrices of the saddle starts at the first node. The other separatrix, having passed through 
the second node, reaches the "shock wave line", i.e. the parabola [12] 

a=(l-U)(1÷.. T-12 U) (1.8) 

for all v. This parabola, the sections of the separatrices found numerically for v = 3 and T = 5/3, and 
several integral curves of the equation under consideration are shown in Fig. 2. In the case of a solution 
with a shock wave (Fig. ld)  the points of the parabola (1.8) with U < 0 lying to the right of the intersection 
of the parabola and the second separatrix correspond to reducing the gas velocity from U/_ < 0 in front 
of  the shock wave up to rest behind .the wave. By (1.3), (1.8) and the relationships on the shock wave, 
the parameters of the gas at rest immediately behind the wave have the following values 

U/+=O, aI+=I-T+Iu/_, R/+=R/ (l-Uf_) 
2 

In the plane case (v = 1, n = 0) all the expressions in square brackets in (1.6) are equal to a - 
( U -  1)L Thus, after reduction, in place of (1.6) we obtain the system 

d U  = U d__x_x = ! (1.9) 
d a  2 a '  d a  2 a  

the integration of which yields (ki being constants): U = k : ,  a = k2 ~2, that is, a uniform flow with u -= 
kl by (1.3). The expressions in brackets which have been cancelled, may vanish themselves. This possibility 
yields a "sonic parabola": a = (U - 1) 2, which describes a centred compression wave with rectilinear 
C-characteds tcs ,  focusing at the origin x = t = 0. As a result, we obtain the well-known self-similar 
solution (Fig. le)  with constant parameters in the triangle z ~ of  between the centred compression wave 
and the shock wave. The corresponding Riemann invariant is preserved in the centred wave [5, 13]. 
This condition, along with (1.3) and the equation of the sonic parabola, yields 

x=  T - I  + ¥ + 1  ( U - I ) ,  ot_- ( U -  !) 2 
2 2 

The resulting values of U and a corresponding to UC (u ~ --**, a ~ ~, x ~ --0) are the same as those U and a 
that yield (1.7) for v = 1. This may appear curious at first. Indeed, for v = 1 the self-similar solution in the plane 
Ua can be described either by the finite relationship a = ( U -  1) 2, or by the first differential equations of system 
(1.9) with one singular point, namely, the node U = a = 0. On the other hand, formulae (1.7) yield the coordinates 
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of an entirely different singular point, a saddle, which is not present when v = 1. A possible solution of this paradox 
may lie in the change from a discrete to a continuous parameter v in (1.6) followed by letting v tend to unity. In 
this case the first equation in (1.6) has a saddle for all v, and it~ coordinates are defined by (1.7), including the 
case when v = 1. In the plane case the second separatrix is the parabola 

(X = ( T -  I)2U 2 / 4  

whose intersection with the shock-wave line (1.8) yields 

T -3- 4(3 - ¥)2 + 4(y2 _ I) 
v:_ = '/2 _ ,  (1.10) 

For the self-similar solutions under consideration, to determine the work done by the piston we can 
use the integral laws of concentration of mass and energy, which for any closed contour F in thext plane 
have the form 

a s = a.._..~ 2 
e = - -  h = e +  p 

y ( y - l ) '  p y / - I  

(1.11) 

As F we take the contour formed by the initial characteristic oi, on which x = -1, U = 0 and R = ot 
= 1, by an arbitrary ray x = const > -1, and by the trajectory of the piston, where dx/dt = u by the no- 
flow condition. Then from (1.11), using (1.3) and the fact that xi = 1, we obtain 

( ot ~,,(.~-t, 
xVR(1 - U) = x v [ .~- )  (1 - U) = 1 (1.12) 

A = 2(x ( l -y /U)+y / (y / - l ) ( l -U)U 2 - 1  

Me o 2"¢2(! - U) 

Here  x = x(~) and A = A ( x )  is the coordinate and the work done by the piston for any x ~> -1, the 
first formula with the 'second' expression on the left-hand side in the case of Fig. l (d)  and (e) being 
valid only under  the shock wave. 

2. The formulae presented above enable us to compare various methods of  UC. Along with IUC 
(Fig. la  with x/--* 0) and UC1 (Fig. lc), we shall consider two more forms of  UC, namely, UC and 
UC3. The first of  these can be obtained as a limit (when xf  -o  O) of states corresponding to a node at 
the origin and x = 0 lying on the integral curves in Fig. 2, and to segments ~ of the x axis in Fig. l(d), 
that is, to the motion of homogeneous gas towards the centre. Another possibility of  unlimited 
compression (UC3) can be obtained as the same limit (when xf--> 0) of gas states after the passage of 
the shock wave o f  (Fig. ld  and e). First, the work ratios will be compared for the above methods of 
UC. Initially, the ratios can be found for compression up to the same finite x/, followed by passing to 
the limit as x / ~  0. The method of comparison is explained in Fig. l(f) showing the terminal sections 
of the corresponding trajectories of the piston along with the trajectories of  the shock waves and the 
initial characteristiic oi. The  x coordinates of the points 1, 2, 3 are the same. For any "self-similar" 
compression, from the first formula in (1.12) we have 

x 2 = xV(~-I)a(l _ U)~ -I 

Hence, from (1.2) and the second formula in (1.12) we find that for identical small xs the ratio of the 
workA done in self-similar compression to the workA 0 in ideal isentropic compression is equal to 

A _  = 2 0  - y u ) +  I'(Y - l ) ( l  - V ) U  ~ / a 

2(l-u) v 

As xf---> 0 this formula becomes precise. Substituting into this formula U and ot from (1.7) for UCI, U(0) 
= 0 and U2(0)/a(0) = Ks 0 for UC2, and expressing of_ in terms of Uf_, from (1.8) for UC3 we find that 
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Table 1 

m~ orz 0~ 

Y v=l 2 3 1 2 3 1 2 3 

1,01 211 105 69,6 202 97,0 62.7 192 87,2 53,4 
1,05 48.4 23,5 15.4 42,0 18,6 11.4 34,8 123 6,29 
1,1 27.5 13,0 8,40 22,0 9,10 5,40 16,1 4,77 1,92 
1.2 16.8 7.59 4,81 12,0 4.60 2.64 7,29 1.56 0,42 
1,3 13,1 5,73 3.58 8,67 3,15 1,78 4,56 0.75 0,15 
1.4 I 1.3 4.78 2.95 7.00 2.46 1,38 3,27 0.43 0,07 
5/3 9.10 3.61 2,17 5,00 1.65 0,92 1,85 0.16 0,02 

3 7,00 2.37 1.37 3.00 0.90 0.51 0.66 0,03 0,001 

a' E o~1 = - - - 1  = 1+ -1,  
,4 o v(7 - l) 

A2 7 
(~2 = ~ - 1 = - -  ( 7  - I ) K  

ao 2 

°~3-'43- I= 2-(7+I)UI_ -1 ,  K = U 2 ( 0 )  
A o (I-UI_)~,'[2+(y-I)UI_] a(O) 

(2.1) 

In the plane case Uf_ is given by (1.10), K = 4/(7 - 1) 2, and 0)2 = 27/(7 - 1). An equivalent formula 
was obtained earlier in [9]. For a cylindrical piston and a spherical piston K and U[_ can be found in 
the course of a numerical construction of the separatrix leading from the saddle (1.7) through the node 
U = cc = 0 towards the intersection with the shock-wave line (1.8). The results of computations carried 
out for various 7 and v are collected in Table 1. Moreover, explicit formulae for v = 1 and an analysis 
of numerical results for v # 1 indicate that cox ---> 0~2 ---> m3 --> .0 andAl/A2 --->A2/A3 ---> 1 for all v and 7 
---> 1. As follows from Table 1 and from the position of the piston trajectories with respect to one another 
in Fig. 1(0 (at point 1 the velocity of the piston and, consequently, the pressure are greater than at 
point 2, and so on): (1) 1 > (1112 > 0) 3 for any fixed v and 7 > 1. As v and 7 increase, each ~ decreases. If 
7 is far from unity, then m3 is only slightly greater than zero in the case of a spherical piston. Since the 
gas behind the reflected shock wave is homogeneous and at rest in this case, that is, the entire work 
done by the piston is used to increase its internal energy, all the characteristics of spherical UC3 and 
IUC that are being compared are close to one another in such cases. Similarly, the characteristics can 
be close to one another as a result of "self-deceleration" of gas moving towards the centre. As 7 decreases 
and v = 3 becomes v = 2, the effect of serf-deceleration weakens and totally vanishes for v = 1. However, 
for all v the pressure drop on the shock wave is finite and decreases as v and 7 increase. 

UC1 and UC2 are significantly inferior to UC3, not only because of the work expended in compression. 
In the case of UC1 the compressed gas is extremely inhomogeneous: for t = tl < 0 as small as desired 
its properties can change from those of an uneompressed gas in a small neighbourhood of the t axis to 
extremely large velocities, densities, pressures, etc. near  the piston. We introduce the Lagrangian 
coordinate m marking the particles by the equality 

x x 1 v 
m = ~XVpO ! p d x  = 0 ~ R(x)dxV 

where the integral is taken at t = q, so that x = tJx. By the law of conservation of mass 0 ~< rn ~< 1. 
The value -1 ~< x < xp corresponds to the gas compression by a piston as t = ts ---) 0, where x = xp 
0 on the trajectory of the piston. In this case, by (1.3), (1.5) and (1.7) 

a 2 ( 1 2 t ( ' t - l )  u._.e.p = 2 .2?-= V(T -I )2  P_e_= ap 

a0 "Cp[2+V(7-1)]' a~ 'C~[2+V(7-1)] 2 '  P0 k.aoJ 
(2.2) 

on the piston for the method of compression under consideration. 
Furthermore, it can be shown that almost all the gas is concentrated near the piston as tl and xp --* 

0, where rn and x are related by 
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"liable 2 

111 × 102 112 × 102 
' i 

)' v--I  2 3 1 2 3 

1.01 0.49 0.98 i,46 0.49 1,02 1.57 
1.05 2.33 4,50 6,67 2.33 5.11 8.10 
1.1 4.35 8.33 12.0 4,35 9,87 15,6 
i .2 7.69 14,3 20.0 7,69 17.9 27,5 
1,3 10.3 18,7 25 .7  10,3 24,1 35.9 
1,4 12.5 22.2 30.0 12.5 28,9 42.0 
5/3 16.7 28.6 37.5 16.7 37,7 52.0 
3 25.0 40,0 50.0 25.0 52,6 66.3 

m = | . . ~ 1  t ,{x_~\j 1= 2 + v ( T -  1) (2.3) 
) ' - 1  

and the distribution of the parameters  over the particles, i.e. the dependence of  the gas propert ies on 
m, is given by 

= ~ m ( 2 . 4 )   o,j 

As xl ---) 0 formulae (2.4) become precise, demonstrating that infinitely compressed gas in inhomo- 
geneous for UC1. 

Finally, for UC1 and UC2, unlike I U C  and UC3, as a rule only a small part  of  the work done by the 
piston contributes to increasing the internal energy of the compressed gas. By (2.2)-(2.4), for UC1 the 
ratio 111 of  the internal energy of infinitely compressed gas to its total energy ("the work efficiency 
coefficient") is equal to 

( : ) '  1]1=(7 - 1 )  2 v 7 _ 1  

For UC2 in the c~Lse of the motion of homogeneous gas towards the "centre" has analogous coefficient 
is given by 

112,= 1/(t02 +1) 

with tt~2 from (2.1). In the case of  a plane piston 1"12 -- 111. 

Values ofni x 102, tx3mputed for various v and 3', are collected in "I~ble 2. Moreover, T h ~ 112 -~ 0 as ~/-~ 1. For 
v # 1 and for all "/UC2 is somewhat more efficient than UC1 as far as 11 is concerned, while each of these two 
compression method,; is inferior in this respect to IUC and UC3, for which rl = 1, 
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